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Abstract. A one-dimensional particle system with arbitrary nearest-neighbour interaction 
and arbitrary external field is investigated. The system is considered as an inverse problem, 
that of determining the internal and external interactions needed to produce given singlet 
and nearest-neighbour pair densities. The profile equations, the entropy functional which 
generates them, and the redefined direct correlation function are found exactly. Equivalent 
expressions are derived in which the full pair distribution and potential-range truncation 
are the controlling functions. 

1. Introduction 

Much of the qualitative information we possess on the properties of many-body 
systems comes from exactly solvable models. Exact solvability in this context of 
course means reduction to a space whose dimensionality does not change with the 
number of particles. Even at this level, however, there is a large distinction between 
solvability in principle and the exhibiting of explicit solutions which aid and may even 
direct the construction of the intuitive conceptual framework which we equate with 
understanding. Equilibrium classical statistical mechanics has a particularly simple 
mathematical formulation, and so one might anticipate that relevant models could be 
constructed without difficulty. This is not the case, and for pair-interacting particle 
systems controlled by external fields, only a few one-dimensional fluids and a very 
special two-dimensional fluid fall into this category [ I ] .  The purpose of this paper is 
to show that a modest expansion of the meaning of solvability leads to the complete 
solution of a more substantial class of one-dimensional fluids, and to a simplification 
of associated structural parameters. 

The system we have in mind is that of particles on a line in equilibrium at reciprocal 
temperature 0. They interact via a pair potential $(x, x’) and are subject to an external 
potential u(x) which serves for containment as well. In a grand ensemble at chemical 
potential p, the system properties are completely determined by the grand potential 

Q [ P  -U, $1. (1.1) 

In particular, the mean particle density is given by 

n(x)  = -ssz/s ( p  - u(x)) (1.2) 

t This paper is based on a presentation given at the IAMP 86 Congress, Marseille-Luminy, 1956 
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and the pair density by 

nz(x,x’) = 26R/64(x,x’).  (1.3) 

Before proceeding further, we will, however, confine our consideration to a simple but 
still significant subclass of systems, that in which the pair potential 4(x,x’) is limited 
to nearest-neighbour particles. (This makes physical sense if non-adjacent particles 
cannot interact: 4 ( x  - x’) = x for Ix - x’l < U,  but 4(x,x‘) = 0 for lx - x’l 2 2a-but 
we will not yet impose such a detailed condition.) If 4 is so restricted, we will also 
declare it to be defined only for x’ 2 x;  thus (1.3) is replaced by 

where is the nearest-neighbour pair distribution, also restricted to x’ 2 x. 
It is now our intention to allow both U and 4 to be chosen at  will -within the 

nearest-neighbour context--resulting in equally arbitrary profile n(x) and pair profile 
Ez(x,x’). We will d o  this, however, by expressing all quantities in terms of I I  and i i 2 ;  

from which U and 4 can be derived. It is this change of viewpoint [2] that leads to the 
possibility of effective solvability. To convert our description from U and 4 as basic 
functions to IZ and i i 2 ,  we perform a Legendre transformation: 

= - ,U J’ n(x) dx  + J’ u(x)n(x) dx  + 11 4(x, x’)E2(x, x’) dx  dx’ - R 

(1.5) 

which we recognise as the thermodynamic function -G + U + P V = T S  and shall so 
denote it. Regarding T S [ n , E z ]  as a functional of n and Ti2, we then find from (1.2) and 
(1.4) the associated conjugate relations 

6 T S  
O(x,x’) = 

6 I 1  (x) 6E*(x,x‘) 
6 T S  u(x) -I* = ~ 

Our task is to construct the entropy functional TS[n ,n?] ,  equations (1.6) constituting 
a complete solution in inverse form of the profile problem at the one- and (nearest- 
neighbour) two-body levels, with thermodynamics being picked up at leisure. 

2. Basic solution 

Let us start with an N-particle canonical ensemble. The (coordinate part of the) 
partition function is thus given, in obvious notation, by 
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where ordering the particles has removed the standard 1 / N  ! indistinguishability factor. 
An even more concise notation is useful. We introduce the matrix, diagonal matrix 
and special vector: 

where e( 1) = exp(-Pu( l)), (2.1) thereby appearing as 

Similarly, the one-body density n(1) in which one of the particles is fixed at xi, is given 
by 

and the nearest-neighbour pair distribution (with x1 I x2 automatically enforced) by 

,?, -1 

i i2h (1, ~ ) Q N  = (JI(ew)'-'ll)( 1 /ew~2)(2/(ew)~V-2- '~J).  
i= 1 

We now proceed to the grand ensemble, in which momentum integrations are as 
usual incorporated into the definition of the chemical potential. To start with, 

where (11~12) = exp[B(p - u(l))]6(1,2). Continuing, 

and in the same fashion 

(2.8) 
- n2(1,2)Z = ( J l ( I  - zw)-'/1)z(1)(1~w~2)z(2)(2~(1- wz)-'IJ). 

To express all relevant quantities in terms of n and f i2 ,  we regard ii2(1,2) as a matrix 
(1 Iii2/2) and n as a diagonal matrix. We first observe, from (2.7) and (2.8), that 

where the omission of a left or right vector in a matrix element is hereafter interpreted 
as the presence of the standard vector J .  It follows that 

(111 -ii2n-'/2) = ( ( I  - z w ) - 1 ~ l ) ( l ~ I  -zw12)/((I -zw)-'/2) (2.10) 

as well as 

(ll(I - z*n - ' )n )  = ( ( I  - z w ) - ~ l l ) ( l ~ I  -zwI2)z(2)(2/(1- wz)--l)/E. (2.11) 
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Integrating over 2, then 

(li(I -n2n-')n) = ( ( I  -nv) - '~ l )Z( l ) /z  (2.12) 

and over 1, 

( ( I  - n*n-')n) = ((I - n v ) - l z ) / E  = (Z - l ) / S  (2.13) 

We then have the first of the thermodynamic quantities 

E = 1/[1 - ( ( I  -Ti2n-')n)]. 

( ( I  -n2n-')12) = l / ( ( I -  zw)-l12) 

As for the profile equations, (2.10) tells us that 

and so from (2.12) and (2.14), 

( I  -E2n-'ll)n(l)(llI -fln-'E2) 

1 - ( ( I  - Ezn--')n) 
z(1) = 

(2.14) 

(2.15) 

(2.16) 

From the relation 

( l~I -n- 'nz)  = l / ( l~( I -Wz)- ' )  (2.17) 

derived as was (2.19, equation (2.8) is then readily converted, via (2.14)-(2.16) to read 

(2.18) 

Taking logarithms, (2.16) and (2.18) yield the profile equations 

p(u(1) - p )  = ln[l -((I -Ezn-')n)] - lnn( l )  - ln(I  -?izn-'Il) - ln( l l I  -n-'E2) 

and 

(2.19) 

Finally, the desired generating function T S ( n ,  82) is obtained by direct substitution 
of (2.14), (2.19) and (2.20) into ( l S ) ,  using of course the identification R = -p-' 1nZ. 
This results in 

- S / K =  J'J'Z2(1,2)1nE1(1,2) d l  d2-  J' n( l ) lnn( l )  d l  

+ J (n(1) - Jn2(1,2) d2) In (n(1) - J7?2(1,2) d2) d l  

+I ( n ( l ) - ~ ~ ~ ( 2 , 1 ) d 2 ) l n ( n ( l ) - ~ ~ ~ ( 2 , 1 ) d 2 )  d l  

+ (1  - J n(1) d l  + n2(l ,2) d l  d2) 

(2.21) 
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As a check, we may apply the relations (1.6), which give (2.19) and (2.20) in the form 

~ ( u ( l ) - p ) = l n n ( l ) - l n  

+ In (1 - J’ n(3) d3 + J’J’ fi2(3,4) d3 d4) (2.22a) 

p4(1,2) = - lnR(1,2)  +In n(1) - n2(1,3) d3 +In n(2)  - ii2(3,2) d3 ( J ’ - > ( s  
- In ( 1 - J’ n(3) d3 + J’ J’ f i2  (3,4) d3 d4) . (2.22b) 

3. Relationship to previous work 

One-dimensional fluids with nearest-neighbour interaction and arbitrary external field 
have been considered on previous occasions, and a meagre number of these systems 
solved exactly [3,4]. We are not going to solve any previously unsolved instances in the 
previous phraseology, but it is appropriate-and easy-to relate the present viewpoint 
to prior formulations. For this purpose, it is necessary to eliminate the dependence 
upon the pair distribution E2. To do so, we rewrite the second of (2.22) as 

- n2(l,2) = \ ~ ( 1 , 2 )  ( n(1) - J’ ii2(1,3) d3 ) ( n ( 2 )  - J i i ~ ( 3 . 2 )  d3) 3. (3.1) 

Then define 

4 1 )  
n(l)-Jn2(1,3) d3 

Z(1) = 

so that 

Now integrating (3.4) over 2, we have 

(3.2) 

or 
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whereas integrating (3.4) over 1 similarly yields 

These, coupled with the relation 

n(1) = z ( l ) Z ( 1 ) 2 ( l ) / Z  

which comes at once from (2.22), and the identification 

are recognised as the profile equations previously obtained [4], with Z(1) and Z(1)  
representing truncated partition functions. 

The direct correlation function c2 is a quantity that has previously been investigated 
in some detail. The often more convenient complete direct correlation function or linear 
response 

for the present systems is not especially simple or transparent, and will be referred to 
in $4. However. i t  is important to observe that if the response is taken, not at  fixed 4,  
but at  fixed i l 2 ,  then we have instantly from (2.22) 

1 
1 - S n ( 3 )  d3 + J J  Ti2(2,3) d2 d3  +- (3.10) 

the sum of a zero-range part and a constant. The net effect is that in our expanded 
format, the direct correlation regains the simplicity-and short-range non-trivial part--- 
that held previously only for hard-rod interactions. 

4. Extension to full pair distribution 

Since i?2 is not itself an  observable quantity, it makes more sense to convert our 
formulation to one in which the full pair distribution n2(1,2) appears, if feasible. It 
is simpler to work with the one-sided distribution nzR(1,2),  in which n 2 R ( 1 , 2 )  = 0 if 
x? < XI, and this is what we shall do. To start, we see that (2 .5 )  is to be replaced by 

f l2~, ,y  (1,2)Q,y = (Jl(eW)" I1)( 1 I (e\V) '12)(2/(eM') '~- '~'elJ) (4.1) 
,-,<\ 

, , , > I  
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and hence (2.8) by 

n2R(1,2)z = ( J I ( I  -zw)-'~l)z(l)(l~w(I -Zw)-'12)z(2)(21(1- w z ) - ' ( J ) .  (4.2) 

(4.4) 

or conversely 

(4.5) 
- n2n-I = nZRn-l(I + n 2 R f 1 ) - ' .  

We may pause to obtain the direct correlation function in the notation. Since 

n2R = nz(I - n-'nz)-l (4.6) 

the full density-density expectation is readily seen to reduce to 

(4.7) n + n2R + n2R T = ( I  -$ti- ' ) - ' ( n  - z ; ~ - ' E ~ ) ( I  - n-'iz2)-' 

where superscript T indicates tianspose. However, quite generally 

( A  - cvTj- '  = A - '  + (A-'c)(CTA ' ) /( l  - r 'A- 'c )  (4.8) 

and one recalls the alternative representation for the complete direct correlation func- 
tion 

c = ( n  + n? - nrrT) - '  (4.9) 

where n is a vector. We conclude from (4.7)-(4.9) that 

where B = (n  - tiT)(n - Tiin-'E$'(n - E:). 
Now. continuing with our transcription, we have, from (4 .9 ,  

(4.10) 

(4.1 1 )  

(4.12a) 

(4.12b) 
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Thus the entropy of (2.21) becomes 

- S / K  = [ [ ( l l n ~ ( n +  n 2 ~ ) - ~ n / 2 ) 1 n ( l l n 2 ~ ( n + n 2 ~ ) - ~ n / 2 )  d l  d2 

+ [ ( l l n ( n +  n 2 ~ ) - ' n ) I n ( l ~ n ( n + n ~ ~ ) - ' n )  d l  

+ [ ( n ( n + n 2 ~ ) - ~ n I l ) l n ( ~ z ( n + n 2 ~ ) - ' n ~ l )  d l  - 

+ [ I  - ( n ( n  + n Z R ) - l i z ) ]  In[l - (nl(n + n2R)-1n)]. 

n ( l ) l n n ( l )  d l  

(4.13) 

Since J J nzR(1,2)q5(1,2) d l  d2 = J 1 E2(1,2)4(1,2) d l  d2 for physical nearest-neighbour 
potentials, one might imagine that P(u(1) - p )  and 84(1 ,2)  could again be recovered 
by differentiating with respect to n and n 2 ~ .  However, the class of n2R thus represented 
is severely restricted, and so this is not the case. For example, one readily finds, from 
(4.13), that 

s ( s /K) / s~ ( I )  = lnn(1) - l n ( l ~ n ( n +  n?R)-'n) -1n(n(n+n2R)-'11) 

s 

+ In[l - ( n ( n  + nzR~- 'n) l  + ~ ( 1 )  (4.14) 

where 

(4.15) 

5. The truncated distribution 

In deriving (2.21), use was made only of thr nearest-rieighbour property of the in- 
teraction, since this allows the nearest-neighbour pair distribution to be sampled by 
perturbing the potential, and vice versa. As we have seen, extending this argument 
to the full (right) pair distribution will not do for physical range-restricted nearest- 
neighbour interactions, because an  arbitrary full distribution is not produced by this 
class. Conversely, since a physically consistent nearest-neighbour interaction for cores 
of diameter a is restricted (unless mediated by excitations of the medium beween two 
successive particles) to have a range of 2 4  only the truncated distribution 

(lli22/2) = ( 1 ~ i ? 2 ~ 2 ) ~ ( 1  i -2a -2 )  (5.1) 

is sampled by the interaction. Thus, we should be able to express all quantities in terms 
of i22 and n. To start with, we must write in terms of 62, and this is not a trivial 
undertaking. The reverse is trivial : we write (2.20) in the form 
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and combine (5.1) for 2 - 1 < 2a with (5.2) for 2 - 1 2 2a where 4(1,2) = 0, to obtain 

(5.3) 

Equation(5.3) is then to be solved for E2. 
Let us rewrite (5.3) as 

where g 
over 1, yields respectively 

(n - E2)/(1 - (n - %2)),  f E (n - A2)/ (1  - (n - Ti*)) .  Integrating over 2, and 

and hence setting 

we have on differentiation 

( f l l + 2 a ) / ( h l l + 2 a )  = -(llh)’ 

(2 - 2alf)/(2 - 2alh) = (hl2)’ 

It follows that 

so that 

(hjl +2a)(l lh) = c +  ((21f)-(f12+2a))d2 

for a suitable constant c. From ( 5 . 7 ~ )  and (5.9), then 

or 

(5.5a) 

(5.5b) 

(5.6) 

(5.74 

(5.7b) 

(5 .8 )  

(5.9) 

(5.10) 

(5.11) 
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for some constant c’. Then from (5.9), we have as well 

(5.12) 

To evaluate the parameters c and c’ in (5.1 1) and (5.12), we observe from ( 5 . 5 ~ )  
and (5.5b) that ( ~ l h )  = 1, (hl - x )  = 1. According to (5.12), then, c’ = c and, from 
(5.1 l ) ,  c satisfies 

(5.13) 

We conclude from (5.1 1) and (5.12) that 

In order to convert these to an expression for n - IZ2 in terms of n - 62, first integrate 
(5.14h), an obvious perfect derivative, over 1 from --x to x, using (5.13) and the 
definition (5.41, ( n  - $/(l  - ( n  - E2)) -1 c - 1, so that 

(5.15) 

We thus have at once 

and 

as well as 

(5.17) 

(5.18) 
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Using the identity 

I 
1 + Jil(i2 - 2aln - A2) - ( n  - fi212)) d2 

(5.19) 
(2 - 24n  - A2) - ( n  - A2/2) I 

= (1% 1 + SAx((3 - 2a/n - A*) - ( n  - $213)) d3 

equation (5.17) transforms to the simpler 

(2 - 2aln - A2) 
( n - ~ z i l )  = (n-A2/l)exp (- ll 1 + J”=((3 - 2 4 n  - A2) - ( n  - A213)) d3 

and (5.3) thereby reduces to the desired 

(lIE*l2) = (ljA212) + € ( 2 -  1 -2a)(lln-fi212) 

(3 - 2a/n - A*) 2 
- LX 1 + S3%((4 - 2aln - A*) - ( n  - A214)) d4 

(5.20) 

Although the entropy is rather complicated when expressed in terms of A*, substitution 
into (2.19) and (2.20) gives reasonably simple, although not fully transparent, profile 
equations: 

~ ( , u - u ( l ) )  = l n ( n - f Q l )  +ln(lln-$2) - lnn( l )  

d2 
( n  - A212 + 2a) 

(2 - 2a/n - A2) 

+ ll 1 + jl,(3ln - A2) - ( n  - ii213 + 2a)  d3 

(3 - 2u/n - f i 2 )  - ( n  - A213) d3 
d2 ~- 

( 1 122 12) 
( l / n  - f i2)(n -- 6212) 

exp(-P4(1,2)) = c(2 - 1 - 2a) + 

6. Conclusions 

(5.21) 

(5.22) 

For a non-uniform pair-interacting system, the external and internal potentials control 
the one- and two-body densities. An inverse viewpoint is obtained by asking how 
the one- and two-body densities control the required external and internal potentials, 
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and by Legendre transforming the generating function appropriately. Expressed in 
this way, nearest-neighbour interactions in one dimension create an explicitly solvable 
system, with a very simple direct correlation structure. If the interaction is not medium 
mediated, the nearest-neighbour property requires a pair interaction with hard core and 
short-range tail, and consequently samples only a limited portion of pair distribution 
space. However, it is not difficult to have the corresponding pair density as controlling 
function, and we have carried this out, after doing the same for the full one-sided pair 
density as a cautionary note. The resulting external and internal profile equations are 
not complicated and suggest extrapolations to more realistic interactions, which are 
the subject of current investigations. 
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